MENU

Non-pineapple Based Food Products

Bromelin

INTRODUCTION
Pineapple is one of the major commodity crops in Malaysia. Scientific studies worldwide show the potential of pineapples as a fruit for health which contains nutraceutical elements. Seven (7) types of commercial pineapple species were tested: Crystal Honey, Gandul, Moris Gajah, Josapine, N36 and Yankee.


METHODOLOGY
Pineapple fruits harvested from the farm are washed, peeled and sliced. Its flesh and core are blended separately to extract the juice. The juice is then filtered. The pH of each type of pineapple is taken and recorded. The pineapple juice is used to determine the concentrated content of Bromelain using HPLC for each type of commercial pineapple using 260 nm and 280 nm wavelengths.


RESULTS AND DISCUSSIONS

 

CONCLUSION
The concentration level of Bromelain content is different for each species. Bromelain content for the Gandul pineapple is found in its core and flesh. While the Bromelain content in N36 and Yankee pineapples is only in the flesh but the Bromelain content in the Yankee pineapple is lower compared to the N36 pineapple. The sucrose content is high in the core and flesh of the Crystal Honey pineapple. This makes the pH reading of the Crystal Honey low.

Bio-Organic Fertilisers

DEVELOPMENT OF BIO-ORGANIC FERTILISERS FROM PINEAPPLE WASTE USING THE EFFECTIVE MICROORGANISMS TECHNOLOGY (EM)

INTRODUCTION

The products created from pineapple waste processed into Bio-organic fertiliser (BOF). To the writer’s knowledge, this has never been implemented in Malaysia previously. The waste produced from pineapple farms post-harvest are leaves, skin, roots and tree stumps. On average 40% represents the pineapple fruit from the overall pineapple tree and 60% w/w is pineapple farm waste. Therefore, the advantages of recycling pineapple farm waste provides the following benefits:

i) No open burning required for waste disposal,
ii) Source of nitrogen from factory waste returns to the soil,
iii) chemical pesticides will no longer be used,
iv) Environmental friendly.

Therefore, it is a sustainable option to use pineapple waste as a raw material for BOF. The purpose of this study is to assess the BOF quality produced in different product formulations.

METHODOLOGY
Table 1 shows the basic formation known as Formula One, which is the development of BOF from pineapple-based. Formula One had been included with pineapple waste as a source of carbon (C), rice bran as a source of mineral (M), quail manure as a source of nitrogen (N), molasses as a source of glucose, Effective Microorganisms (EM) as a decomposer agent and water as a source of oxygen. As a comparison, various formulas have been developed, namely Formula B. In Formula B, a total of 10% w/w burnt rice husk have been added. The purpose of adding rice husk is to increase potassium, (P in BOF). The list for Formula B as shown in Table 2. The Standard Operation Procedure (SOP) for the preparation of BOF is tabulated in Table 3 and each of the steps shown in Figure 1-7.

 

Table 1 : List of Raw Materials for Formula A

RAW MATERIALSTOTAL (kg/L)PERCENTAGE (%) w/w
Pineapple Waste75 kg75
Rice Husk10 kg9.5
Quail Manure10 kg9.5
Molasses3L (3 kg)3
EM Solution3L (3 kg)3
Water18 L
TOTAL101 kg100%

 

 

Table 2 : List of Raw Materials for Formula B

RAW MATERIALSTOTAL (kg/L)PERCENTAGE (%) w/w
Pineapple Waste75 kg75
Rice Husk10 kg9.5
Quail Manure10 kg9.5
Burnt rice husk10 kg10.0
Molasses3L (3 kg)3
EM Solution3L (3 kg)3
Water18 L
TOTAL101 kg100%

 

Table 2 : List of Raw Materials for Formula B

DAY 1All the raw materials were are mixed well for 15 minutes and then covered with gunny sack
DAY 2The gunny sack is opened, and all the raw materials are mixed again for 15 minutes and covered again. The purpose of this second mixing process is to remove/control the heat of mixture within 45-50°C temperature
DAY 3The procedure of day 2 is repeated
DAY 4The gunny sack is opened, the level of the mixture should be approxiametly 10 cm height from the floor. The mixture was covered again with gunny sack and left until Day 7. Purpose of this level activities is to ensure the mixture can be dried in Day 7
DAY 5All the mixture turned to BOF, and can be used directly to the pineapple plant or stored in plastic bags
SILAGE

THE PRODUCTION OF SILAGE FROM PINEAPPLE WASTE BY USING EM BIO-TECHNOLOGY

INTRODUCTION
“Effective Microorganisms (EM)” consists of 3 main bacteria groups namely phototropic, lactic acid and yeast. It is a mixture of microbe symbiosis invented by Professor Dr. Teruo Higa. EM is made by a mixture of cultured microbial species obtained from the natural environment and works according to the synergy of its own.


METHODOLOGY

Table 1 shows the solution preparation for a 10-liter container. EM solution and brown sugar are mixed well together. Salt is added and non-chlorinated water is poured till full. The ready mixed solution is then ready for the silage production process as shown in photos 1 and 2.

Table 1 : Solution Preparation Ingredients for Pineapple Leaves Silage

INGREDIENTSMEASUREMENTS
EM Solutions300 ml
Brown Sugar1 kg
Salt0.5 kg

 

Table 2 : Parameter Result for silage content for Day 1, 16 and 70.

PARAMETERSRESULTS
DAY 1DAY 16DAY 70
% Moisture24.7681.4480.86
% Ash1.060.890.85
% Protein0.020.090.26
% Fat0.350.280.45
% Crude fiber17.137.122.38
% Carbohydrate56.6810.1815.20
Energy Value of Food
(kcal/100g)
229.9543.6065.89

 

From Table 3, toxicity level reading resulted from “Mycotoxin”
for pineapple leaves silage test indicates that it is safe to eat by ruminants up to
70 days of fermentation.

Table 3 : Parameters Results for silage content for Day 1, 16 and 70.

PARAMETERRESULTS
DAY 1DAY 16DAY 70
Aflotoxin (ppb)<5<5<5
Ochratoxin<2<2<2

Studies were also conducted on ruminants to weigh before and after consuming the pineapple leaves silage. The F.C.R (Feed Consumption Rate) readings were taken for 50 days on 5 cows. Through early experiment, the ruminants did not experience food poisoning for a week after consuming silage.

 

RESULTS AND DISCUSSION
The parameter result for Moisture, Ash and Fat in Table 2 are consistent from day 1 until 70. The Protein content analysis is found to have increased from 0.02% to 0.26%. Whereas there had been a reduction of 73.18% for Carbohydrate content from 56.68% to 15.20% due to an increase in the Protein content. This is because Carbohydrate is used by microbes as a food source and when the microbe dies out, it contributes to the increased percentage of protein content.

Paper

PAPER PRODUCTION FROM PINEAPPLE LEAVES

INTRODUCTION

The pineapple leaf fibre is a strong natural fibre, most of these fibres are used as fillings in the composite material. The pineapple leaf fibres are used as a base material in the production of paper due to its high content of cellulose. Papers made from pineapple leaves are produced through chemical and mechanical methods. Several tests were also carried out.

METHODOLOGY

  1. Mechanical: – Pineapple leaves are dried, pulverised, bleached and glued with different types of starch.
  2. Chemical: – 2 types of treatment with Sodium Hydroxide and Acetone were applied on the pineapple leaves.
 

 

TESTING THE FEATURES OF PINEAPPLE LEAVES

Table 1 : Tensile test

 PRODUCTION METHOD
 Mechanical Chemical
Rice starchFeatures: Hard, strong and sturdyBreakable and brittle
Tapioca starchFeatures: Soft and sturdy
Sago starchFeatures: Soft and sturdy

Table 2 : Tear test

 PRODUCTION METHOD
 Mechanical 6400
(Nm2/kg)
Chemical 6400
(Nm2/kg)
Rice starch592592
Tapioca starch440576
Sago starch536425

Table 3 : Water absorption test

 PRODUCTION METHOD
 Mechanical 6400
(Nm2/kg)
Chemical 6400
(Nm2/kg)
Rice starchLowestModerate
Tapioca starchModerateLow
Sago starchLargeHighest

 

RESULTS AND DISCUSSION
Pineapple leaf based paper has the potential to be developed as paper crafts. Pineapple leaf fibres combined with rice starch resulted in a hard and sturdy polymer feature while sago and tapioca starch formed a soft and sturdy polymer. Paper produced by mechanical process is more suitable than the chemical process.

CONCLUSION

The best method to produce paper is through chemical process based on the tear test performance. The combination of pineapple leaf fibres and rice starch proves to be the best in demonstrating a strong and sturdy feature as compared with other types of starches. Rice starch is also more suitable as a binder due to its small-sized particles. Pineapple leaves can be used as a raw material replacement in the production of paper.

Thread

PENGHASILAN BENANG DARI SERAT DAUN NANAS

PENGENALAN
Nanas atau Ananas comosus sejenis tumbuhan yang memiliki pucuk yang sangat pendek dan mempunyai 25-30 helaian daun setiap pokok dengan memiliki ukuran panjang di antara 0.9-1.5m. nanas adalah tumbuhan asli dari Timur Amerika Selatan. Kawasan penanaman nanas terbesar adalah di negara beriklim tropika. Biasanya, daun nanas dituai selepas hasil buahnya di kutip sekitar 24 bulan selepas penanaman. Serat daun nanas (PALF) adalah hasilan daripada penanaman nanas. Serat daun nanas (PALF) terbentuk dari bahan multi-selular dan lignoselulosa yang diekstrak dari daun tumbuhan tersebut. Dilaporkan komposisi kima yang utama tedapat pada serat daun nanas (PALF) adalah selulosa (70-82%), lignan (5-12%0 dan abu (1.1%)

Ciri-ciriNilai
Diameter (mm)0.2-8.8
Young Modulus(MPa)6260
Tensile Strength (MPa)413-1627
Specific Modulus (MPa)4070
Elongation at break (%)3
Moisture Regaint12

Jadual 1 : Ciri-ciri serat daun nanas (PALF)

CiriKultivar
Moris GajahJosapineSarawak
Kekuatan Tensil (MPa)174.89293.08148.44
Young Modulus (GPa)7.4518.9410.46
Elongation at break (%)0.521.411.05

Jadual 2 : Ciri-ciri serat daun nanas (PALF) bagi kultivar yang berbeza

METODOLOGI

Fiber Board

PENGHASILAN KOMPOSIT SERAT RINGKAS TERBIODEGRADASI DARIPADA KULIT NANAS

PENGENALAN
Sisa nanas merupakan hasil sampingan daripada industri pemprosesan nanas yang terdiri daripada pulpa dan kulit. Kulit nanas kaya dengan kandungan cellulose dan hemicellulose serta karbohidrat. Berdekad lamanya, kita ketahui bahawa bahan berselulosa penting untuk memberi sifat mekanikal komposit yang baik berbanding dengan bahan tanpa selulosa. Kini bahan termoplastik semakin meluas digunakan untuk pelbagai aplikasi. Termoplastik komposit dari bahan semulajadi juga dikatakan mempunyai potensi tinggi untuk menggantikan bahan asas kayu-kayan pada masa akan datang. Strategi di sebalik pendekatan ini adalah untuk membangunkan bahan baru daripada serat kulit nanas yang dikukuhkan oleh kandungan poythelene yang berkepadatan tinggi tanpa mengorbankan ciri-ciri diingini yang mengandungi komponen terbiodegradasi daripada sisa yang mudah urai dan selamat untuk alam sekitar dan mampu menjimatkan kos. Dalam kajian ini, kulit nanas akan digabungkan dengan polythelene untuk membentuk komposit baru. Kajian terhadap pencirian, morfologi, mekanikal dan kandungan terma akan dilakukan untuk menghasilkan bahan pembungkusan dengan fiber tinggi.

KEBAIKAN

  • Tetulang yang baik, bagi meningkatkan sifat-sifat mekanikal
  • Mesra alam dan boleh dikitar semula
  • Dapat mengurangkan keretakan dan serpihan
  • Pengembangan haba yang rendah dan ketahanan yang tinggi
  • Penyelenggaraan yang rendah
Essential Oil

PENGHASILAN MINYAK PATI DARIPADA SISA BUANGAN NANAS

PENGENALAN
Objektif kajian ini ialah untuk menghasilkan minyak pati naans dan mengenalpasti jumlah penghasilannya minyak pati nanas yang boleh dihasilkan melalui kaedah penyulingan. Tempoh penyelidikan ini ialah 1 tahun. Minyak pati yang dihasilkan dianalisa dengan menggunakan teknik ‘Flouro Transform Infra-Red’,(FTIR).

METODOLOGI

Charcoal

POTENSI SISA BIOJISIM NANAS SEBAGAI BAHAN LESTARI UNTUK PENGHASILAN KARBON TERAKTIF

PENGENALAN

Aktiviti pertanian merupakan salah satu dari penyumbang utama kepada pendapatan negara. Walau bagaimanapun, aktiviti ini juga telah menjana sejumlah besar bahan buangan yang boleh membawa kepada pencemaran yang serius serta menyumbang kepada kesan “Rumah Hijau”. Oleh itu, pengurusan sisa pepejal pertanian yang cekap adalah amat penting. Selain dari langkah pelupusan biasa, sisa ini sebenarnya boleh ditukar kepada bahan-bahan lain yang berguna serta mempunyai nilai ekonomi yang penting. Sisa biojisim nanas contohnya boleh ditukar menjadi arang teraktif melalui kaedah pengaktifan kimia. Di samping aplikasi industri yang pelbagai, eksploitasi biojisim nanas juga boleh menambahkan pendapatan peladang nanas.  

 

METODOLOGI  

KEPUTUSAN DAN ANALISIS

  • Daripada ujian penjerapan bahan pewarna (metilena biru) yang dijalankan selama 24 jam, arang teraktif yang dihasilkan dari batang nanas menunjukkan kapaisiti penyingkiran metilena biru terpantas diikuti oleh daun nanas dan jambul nanas.
  • BET analisis luas permukaan menunjukkan bahawa arang teraktif yang dihasilkan daripada daun nanas mempunyai luas permukaan tertinggi di 1002.51m2/g berbanding jambul nanas(954.86m2/g) dan batang nanas (793.68m2/g)
  • Keputusan ini menunjukkan bahawa terdapat potensi yang besar dalam menggunakan sisa biojisim nanas sebagai bahan mentah yang mampan untuk menghasilkan arang teraktif yang murah.

 

KESIMPULAN

Daripada ujian awal yang dijalankan, boleh disimpulkan bahawa karbon teraktif yang dihasilkan daripada sisa bio-jisim nanas mempunyai potensi untuk dibangunkan sebagai “biosorbent” atau sebagai agen penjerapan biologi. Walau bagaimanapun, kajian lanjut diperlukan untuk meneroka sepenuhnya potensi biomas sisa nanas sebagai karbon diaktifkan.

Malaysian Pineapple Industry Board
Wisma Nanas, No. 5, Jalan Padi Mahsuri
Bandar Baru UDA,
81200 Johor Bahru,
Johor, Malaysia

Hotline : 07-236 1211 / 07-236 1012
Fax No : 07-236 5694 / 07-236 5451
umum[at]mpib[dot]gov[dot]my

Best view in Chrome version, Mozilla Firefox and Internet Explorer 11 and above

Last update: 10 July 2024 at 09:52:52

Jumlah Pengunjung Julai 2024 : 6900

Jumlah Pengunjung Sehingga Julai 2024 : 698856

© 2024 Malaysian Pineapple Industry Board
chevron-down
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram